

AHAS - Aviation Hazard Awareness System

Design and Flight Testing of a Prototype AWIN System for Transport Aircraft

Weather Accident Prevention Third Annual Review November 20-21, 2002

Phil Schaffner
Sensors Research Branch
NASA Langley Research Center
Hampton, VA 23681-2199
(757) 864-1809
E-mail: P.R.Schaffner@LaRC.NASA.gov

Presentation Outline

- Introduction
- Background
- Flight Experiment Configuration
- Flight Test Results
- FY-03 Flight Experiment Plans
- Conclusions

WxAP/AWIN/AHAS Milestones

- Milestone 11: Initial AHAS Flight Evaluation
 - Completed on ARIES 2002 with AHAS
- Milestone 14: AHAS Flt Eval w/ Cockpit Display
 - Scheduled for 2003 Deployment

Aviation Hazard Awareness System (AHAS) Background

- EWxR and AWARE Cooperative Research Agreements (CRAs)
 - Negotiated between NASA and Rockwell Science Center (now Rockwell Scientific) and involving Rockwell Collins
 - AWARE: Aviation Weather Analysis and Reporting Enhancements
 - Originally intended as a General Aviation (GA) pre-flight briefing tool
 - EWxR: Enhanced Weather Radar
 - Combines airborne weather radar with datalinked information
 - Flight tested on Rockwell and NASA aircraft
 - Flown on NASA B-757 Airborne Integrated Research Experiment System (ARIES) in 2000 & 2002
- AHAS is a NASA-sponsored program conducted jointly by Rockwell Scientific, Rockwell Collins, and NASA
 - Combines EWxR and AWARE CRA technologies into an in-flight weather analysis tool

Current AHAS Rockwell Principals

AvSP / Weather Accident Prevention / Aviation Weather INformation

Rockwell Scientific

Dr. Wallace E. Kelly III Research Scientist, Rockwell Scientific wkelly@rwsc.com 919-806-4364

Corinne C. Ruokangas Senior Scientist, Rockwell Scientific cruokangas@rwsc.com 650-851-8646

Rockwell Collins

Mary Beth Lapis Rockwell Collins mblapis@rockwellcollins.com 319-295-3045

Kevin Kronfeld Rockwell Collins Advanced Technology Center kmkronfe@rockwellcollins.com 319-295-1996

Aviation Hazard Awareness System (AHAS) Background

- AHAS is an enhanced weather analysis tool, integrating text-based and graphical weather data for superior situational awareness in the context of a specific mission and equipment profile
- Initial flight evaluation on NASA B-757 Airborne Integrated Research Experiment System (AIRES) in FY-2002
 - First-generation prototype AWIN system
 - Evaluation by researchers no cockpit display
- AHAS Tactical Mode: Enhanced Airborne Weather Radar
 - Derived from EWxR CRA technologies
 - Real-time EWxR displays
 - Pilot can select combinations of WxR, NEXRAD, Attribute Data
 - Radar data collection for additional post-flight processing
- AHAS Strategic Mode: Moving Map Display
 - Derived from AWARE CRA technologies
 - Real-time hazard analysis on datalinked weather information
 - Strategic display of flight-path relevant weather hazards

Why decision aids?

AvSP / Weather Accident Prevention / Aviation Weather INformation

Complexity of information: Pilots must first parse & translate WMO codes, then draw on training and experience to interpret.

Volume of information: Pages of text are the norm for preflight briefing. Future proliferation of graphical weather products may increase difficulty of monitoring relevant weather.

Reduction in workload/training: Pilots receive training in meteorology; Decision aid can reduce reliance on training.

AHAS is designed to benefit pilots (or dispatchers) who, due to cognitive overload, may not absorb and retain all flight-critical weather information from the vast (cryptic) stream of data they are legally required to review...

KTRM 022352Z 12006KT 25SM FEW200 SCT250 25/03

A2988 RMK SLP117 10261 20219 56015

KBUO 022346Z 29009KT 7SM SKC 18/14 RMK MAX 68

NOSPECI

KRIV 022355Z 28006KT 3SM HZ FEW000 19/11 A2995

RMK SLP133 HZ FEW000 56008

KRAL 022346Z 28012KT 7SM SKC A2993

KONT 022346Z 22008KT 6SM HZ FEW000 23/08 A2993

RMK HZ FEW000

KNXP 022355Z 00000KT 7SM FEW200 20/02 A2995

RMK SLP121 8/001 T02000022 10200 20128 56019

WHAT YOU GET NOW... WHAT YOU REALLY NEED TO KNOW ...

- TAFs
- METARs
- FAs
- AIRMETs
- SIGMETs
- NOTAMs
- PIREPs
- Winds Aloft
- NEXRAD images
- on-board WXR

• ...

Can I safely complete my mission without encountering weather hazards?

AHAS/AWARE Decision Analysis

- One aspect of information filtering.
- Applies user/equipment constraints.
- User still has access to raw data.

AHAS Tactical WxR/NEXRAD Data Correlation

AHAS/EWxR Decision Aids

- Hazard Avoidance and Flight Path Impact Prediction algorithm automatically determines hazardous regions along flight plan.
- Operates in real time with dynamic data.

AHAS/EWxR on FY-02 WxAP Integrated Flight Experiments 🛹

AvSP / Weather Accident Prevention / Aviation Weather INformation

Aviation Weather Information (AWIN)

Aviation Hazard Enhanced Weather Awareness System Radar (AHAS) (EWxR) Weather Information Communications (WINCOMM)

Satellite Communication (SATCOMM) Datalink

NASA

Aviation Hazard Awareness System (AHAS)

- FY-02 AHAS/EWxR Flight Test Objectives
 - Operational evaluation of the Aviation Hazard Awareness System and Enhanced Weather Radar system
 - Collect data to further develop AHAS concepts
 - Verify NEXRAD attribute data and other datalinked weather products
- SATCOM datalink provided by NASA Glenn WINCOMM program

AHAS/EWxR FY-02 Accomplishments

- Installed AHAS on NASA B-757 ARIES
- Conducted flight experiments to collect weather, aircraft, and radar data and assess overall system performance using research displays in the aft cabin of the B-757
- AHAS and EWxR operated on 15 flights in 2002 and extensive data was collected
- Verified data-linked storm-top information, turbulence indications, and SIGMET hazard areas using airborne weather radar, in situ information, visual, and meteorological observations

AHAS/EWxR FY-02 Accomplishments (Continued)

- Preliminary evaluation supports the utility of the AHAS system in increasing strategic and tactical situational awareness of weather hazards via successful demonstration of:
 - Correlation/Data fusion of airborne and groundbased weather information.
 - Automated Hazard Assessment and Flight Path Impact Decision Aids.

AHAS/EWxR B-757 ARIES Installation

AHAS/EWxR ARIES Installation

AvSP / Weather Accident Prevention / Aviation Weather INformation

AWIN Modifications at TTA1 Pallet

AHAS FY-02 System Block Diagram

Rockwell

Notional view of AHAS

AHAS – Strategic Display

Primary Display: Strategic mode similar to AWARE

ROCKWELL

Alerts

Mode control: Strategic or Tactical

Secondary
Displays:
Decision
Analysis &
data source

AHAS Strategic Display

Confirmation of flight plan impact prediction: A two-g turbulence encounter

NASA ARIES AHAS/EWxR Flight Tests

AvSP / Weather Accident Prevention / Aviation Weather Information

Flight Path Impact Prediction

May 17, 2002

AHAS Summary

AHAS Benefits

- AHAS is an enhanced weather analysis and display tool, integrating text-based and graphical weather data (both data-linked and sensor-based) in the context of a specific mission and equipment profile
- AHAS uses decision analytic tools to assess and automatically alert pilot to relevant weather hazards
- Displays of datalinked weather information in both strategic (map) and tactical (track-up, combined with airborne weather radar) were developed and shown to work in real-time

FY-03 Flight Experiment Plans

- AHAS is being further developed under a task with Georgia Tech Research Institute (GTRI) with Rockwell Scientific and Rockwell Collins as subcontractors
- Software and hardware upgrades are underway
 - Cockpit Display
 - Computer Upgrades
 - Extend Client/Server Architecture
- FY-03 AHAS Flight Experiment Objectives
 - Assessment of AHAS weather information with real weather
 - Incorporate new National Convective Weather Forecast (NCWF) and Diagnostic (NCWD) products
 - Evaluate NEXRAD versus NCWD/F attribute data
 - Piloted assessment of AHAS decision aids
 - Usability feedback on AHAS display formats

Conclusions

AvSP / Weather Accident Prevention / Aviation Weather INformation

AHAS is a prototype AWIN system

- Builds on technologies developed under AWARE and EWxR Cooperative Research Agreements
- Supports AWIN research on cockpit use of graphical weather products and decision aiding by intelligent analysis of weather information
- Flight tests on NASA B-757 ARIES in FY-02 support utility and continued development
- Piloted evaluations on ARIES planned for FY-03
- Applications to future AWIN simulation and flight experiments for ground and airborne users in both Transport and GA are being considered

Appendices: AWARE and EWxR CRAs

Aviation Weather Awareness and Reporting Enhancements:

AWARE et al - context sensitive display of hazards

Decision Analysis & Usability Studies

Corinne C. Ruokangas Senior Scientist, Rockwell Scientific

cruokangas@rwsc.com 650.851.8646

AWARE Outline

- Relationship of three AWARE-based projects
- Screen shots of AWARE in operation
- Discussion of Decision Analysis
- Screen shots of AHAS, AWARE-Dispatcher, including impact on Decision Analysis
- Usability studies: formal and walkthroughs

AWARE, AHAS, AWARE Dispatcher

- AWARE: General Aviation, web-based Pre-Flight briefing
- AHAS: Augmented and modified for in-cockpit (real-time)
- AWARE Dispatcher: dispatcher support (parallel flights)

All featuring context-sensitive automated hazard alerting based on decision analysis techniques (Bayesian Network model)

AWARE, AHAS, AWARE Dispatcher

AvSP / Weather Accident Prevention / Aviation Weather INformation

Initially implemented for General Aviation, web-based Pre-Flight briefing

Augmented and modified for commercial in-cockpit (real-time)

and commercial dispatcher support

AWARE, AHAS, AWARE Dispatcher

Initially implemented for General Aviation, web-based Pre-Flight briefing

Augmented and modified for commercial in-cockpit (real-time) and commercial dispatcher support

AWARE, AHAS, AWARE Dispatcher

Initially implemented for General Aviation, web-based Pre-Flight briefing

Augmented and modified for commercial in-cockpit (real-time) and commercial dispatcher support

NASA

AWARE Decision Analysis Strength

- AWARE projects all have the advantage of an underlying decision analysis model to evaluate, under uncertainty, multiple sources of weather within the context of the specific mission.
- Using this underlying capability, AWARE can perform hazard analysis, determining whether context-sensitive hazards exist
 - Pilot/dispatcher preferences
 - Aircraft constraints
 - The specific flight plan.

AWARE Decision Analysis

- One aspect of information filtering
- Applies user/equipment constraints
 - Pilot/dispatcher preferences
 - Aircraft constraints
- User still has access to raw data, for completeness

NASA

Decision Analysis Challenge

- Model is large, complex; must be reusable...
 - Must be able to represent GA (VFR, IFR), Commercial Pilots, Dispatchers
- Solution: Wrapper, mission parameter based
 - Commonality: flightpath, timeframes, personalization
 - Determines/applies mode, preferences, spatial-temporal context;
 relevance of submodels

AWARE, AHAS, AWARE-Dispatcher

Initially implemented for General Aviation, web-based Pre-Flight briefing (AWARE) **Augmented and modified for commercial in-cockpit** (real-time)

and commercial dispatcher support

AWARE, AHAS, AWARE-Dispatcher

AvSP / Weather Accident Prevention / Aviation Weather Information

AWARE	Preflight E	Briefing	VFR	IFR	LIFR	3
	FY'99	l	FY'00	FY'01		FY'02
Tactical	On-board Radar/Storm Finding		Flight plan impact		+ Nexrad	

AHAS

Integrated in-flight decision aid

- AHAS -
 - In-cockpit graphical data presentation for situational awareness
 - Hazard analysis top level presentation
 - -Details available in drill-down mode
 - Decision analysis based hazard alerts, strategic and tactical "intelligent assessment of hazards"

AHAS – In Cockpit

Primary Display – Strategic mode similar to AWARE

ROCKWELL SCIENTIFIC

Alerts

Mode control:

Strategic or Tactical

Secondary Displays: Decision Analysis & data source

NASA

Decision Analysis Challenge

- Model is large, complex; must be reusable...
 - Must be able to represent GA (VFR, IFR), **Commercial Pilots**, Dispatchers
- Solution: Wrapper, mission parameter based
 - Augmented with WindsAloft
 - Removed visibility/ceiling hazards enroute (still visualized)
 - Utilize LIFR settings for preferences rather than VFR/IFR
 - Timeframe is present-data only

AWARE, AHAS, AWARE-Dispatcher

Initially implemented for General Aviation, web-based Pre-Flight briefing (AWARE) Augmented and modified for commercial in-cockpit (real-time)

and commercial dispatcher support

AWARE, AHAS, AWARE-Dispatcher

AvSP / Weather Accident Prevention / Aviation Weather INformation

AWARE Preflight Briefing VFR IFR LIFR Dispatcher FY'99 FY'00 FY'01 FY'02

AWARE Dispatcher implements a parallel flight weather hazard alerting system

- Automatic notification of hazards for multiple flights
- Display and relevant alerts for parallel flights
- Generation of alerts specific to dispatcher preferences

AWARE Dispatcher

AvSP / Weather Accident Prevention / Aviation Weather Information

Primary Display – Strategic mode only, AWARE overlay options SCIENTIFIC

NASA

AWARE Dispatcher

AvSP / Weather Accident Prevention / Aviation Weather Information

Alerts — identifiable with mouse-over; associated with text below

Overall Hazard results, plus triggers

er 19, 2002

NASA Langley Research Center

P.R.Schaffner, Page 48

NASA

Decision Analysis Challenge

- Model is large, complex; must be reusable...
 - Must be able to represent GA (VFR, IFR), Commercial Pilots, Dispatchers
- Solution: Wrapper, mission parameter based
 - Instantiation of model per flight
 - Preferences based on dispatcher setup
 - Timeframe is current time

Usability Testing

- AWARE
 - Formal testing for both VFR & IFR modes
 - 6 subjects, 4 flight plans; 2 test methods
 - 2 visits for comparable evaluations of flights

- AHAS, AWARE-Dispatcher
 - Walk throughs for design / evaluation

Usability test method: DUAT

AvSP / Weather Accident Prevention / Aviation Weather INformation

A small subset of the DUAT for that flight; the entire document is 39 pages long.

KNIW 081855Z 33011KT 4SM BR SCT009 OVC015 06/04 A2985 RMK SLP107 T2 SET T00600040

KNFW 081905Z 33015KT 3SM BR BKN009 OVC015 06/04 A2985 RMK SLP107 T2 SET

METAR KFTW 081853Z 33011KT 7SM OVC012 05/04 A2983 RMK AO2 SLP104 T00500039

SPECI KFTW 081908Z 33011KT 7SM FEW008 OVC016 05/04 A2984 RMK AO2 SPECI KFTW 081921Z 32013KT 5SM BR BKN008 OVC016 05/04 A2983 RMK AO2 CIG 006V011

NASA Langley Resouls hossouler P.K. Schaffner, Page 51

Usability test method: AWARE

AvSP / Weather Accident Prevention / Aviation Weather Information

AWARE: Objective/Subjective Results

Flight	Α	В	С	D
AWARE	All subjects found all hazards	All subjects found all hazards	All subjects found all hazards	All subjects found all hazards
DUAT All subjects missed IFR airmet, found all other hazards		1 found sigmet; others found all but sigmet	All found all hazards	3 missed visibility due to IFR airmet

- Enthusiasm of pilots
 - Sigmet/Airmet boundaries
 - Hazard analysis with graphics, Nexrad animation
 - "Can I have it now?"
- Suggestions for modifications
 - UI, model variations
- Suggestions for next steps
 - VFR for IFR, IFR for LIFR...

- United Flight Operations
 - Initial display format evaluations
 - Iterative prototyping of extended system
 - Navigation, level of detail, value of overlays
 - Mouse over
- Flight test experimental testing
 - Forms complete; limited by pilot availability

AWARE Dispatcher Usability Studies

- United Dispatcher Center (World Headquarters)
 - Determine relevance of AWARE, AHAS-like display and hazard alerts for multiple flights
 - Automatic Alerting, tailored to the dispatcher
 - Larger display format, multiple flight ID
 - Data by altitude, graphical Pireps
 - Iterative prototyping display, automatic alerts
 - Automatic Alerting for complex situations
 - Data not easily visualized
 - Combinations of parameters
 - Evaluations requiring calculations
 - Display advantages; merge with existing
- American Airlines

AvSP / Weather Accident Prevention / Aviation Weather INformation

Enhanced Weather Radar System

Kevin Kronfeld, Rockwell Collins

AvSP / Weather Accident Prevention / Aviation Weather Information

Enhanced Weather Radar (EWxR):

Create an integrated weather advisor that controls and interprets the weather radar as a human expert would.

EWxR Technology

- WxR Assistant
- Automated Storm Finding WxR
- Real-time WxR image processing
 - Extract storm cells from WxR imagery
- Data Correlation/Fusion
 - Fuse information about a storm cell from multiple sensors and data sources.
- Decision Aids
 - Automatically assess whether a cell is hazardous and will affect the pilot's mission.

EWxR Data Correlation/Fusion

Collins Sabreliner Flight Tests

AvSP / Weather Accident Prevention / Aviation Weather INformation

September 2002

- Collins Business and Regional Systems (BRS) and Weather Services International (WSI) provided SATCOM datalink.
- WSI, Collins weather service partner, provided weather data to the aircraft.

Sabreliner Flight Test

Hazard Assessment - September 5, 2002

Sabreliner Flight Test

Flight Path Impact Prediction - September 5, 2002

EWxR Plans

AvSP / Weather Accident Prevention / Aviation Weather INformation

Leverage existing EWxR technology for additional aviation weather research.

- Integrated into NASA's Airborne Hazard Avoidance System (AHAS).
- Build upon existing tactical decision aids to automatically assess hazardous weather as new national and international weather information is available.
 - Enhanced Hazard Assessment and Flight Path Impact prediction.